studying the corona product of graphs under some graph invariants

Authors

m. tavakoli

f. rahbarnia

ali reza ashrafi

abstract

the corona product $gcirc h$ of two graphs $g$ and $h$ isobtained by taking one copy of $g$ and $|v(g)|$ copies of $h$;and by joining each vertex of the $i$-th copy of $h$ to the$i$-th vertex of $g$, where $1 leq i leq |v(g)|$. in thispaper, exact formulas for the eccentric distance sum and the edgerevised szeged indices of the corona product of graphs arepresented. we also study the conditions under which the coronaproduct of graphs produces a median graph.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Studying the Corona Product of Graphs under Some Graph Invariants

The corona product G ◦ H of two graphs G and H is obtained by taking one copy of G and |V (G)| copies of H; and by joining each vertex of the i-th copy of H to the i-th vertex of G, where 1 ≤ i ≤ |V (G)|. In this paper, exact formulas for the eccentric distance sum and the edge revised Szeged indices of the corona product of graphs are presented. We also study the conditions under which the cor...

full text

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

full text

Total vertex irregularity strength of corona product of some graphs

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...

full text

Applications of some Graph Operations in Computing some Invariants of Chemical Graphs

In this paper, we first collect the earlier results about some graph operations and then we present applications of these results in working with chemical graphs.

full text

total vertex irregularity strength of corona product of some graphs

a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...

full text

the hyper edge-wiener index of corona product of graphs

let $g$ be a simple connected graph. the edge-wiener index $w_e(g)$ is the sum of all distances between edges in $g$, whereas the hyper edge-wiener index $ww_e(g)$ is defined as {footnotesize $w{w_e}(g) = {frac{1}{2}}{w_e}(g) + {frac{1}{2}} {w_e^{2}}(g)$}, where {footnotesize $ {w_e^{2}}(g)=sumlimits_{left{ {f,g} right}subseteq e(g)} {d_e^2(f,g)}$}. in this paper, we present explicit formula fo...

full text

My Resources

Save resource for easier access later


Journal title:
transactions on combinatorics

Publisher: university of isfahan

ISSN 2251-8657

volume 3

issue 3 2014

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023